“We shouldn’t forget, however, that when it comes to designing efficient aerodynamics, electric vehicles offer distinct advantages. For instance, it’s only thanks to the battery and dispensing with an exhaust system that we were able to create an enclosed and very smooth underfloor from nose to tail. There was a lot of back and forth with our colleagues in chassis development to make sure all the main axle components remain concealed beneath underfloor panels. Everything—including tunnel, fuel tank and exhaust system—that’s responsible for air turbulence around cars with internal combustion engines no longer exists in the same form on electric vehicles. For aerodynamics, this is a tremendous plus. What’s more, an electric motor is much more efficient than a combustion engine. It not only releases less heat into the environment but does not require as much cooling nearly as often. Consequently, we are able to develop thermal management concepts that are beneficial to aerodynamics. The active inlet louvers on our Audi e-tron models’ Singleframe grilles are a case in point—and a pivotal aerodynamic measure at the front end. An electronically operated louver system on each of the two air inlets can be automatically opened or closed, depending on the degree of cooling the vehicle requires. We aerodynamicists like to say that the louvers should always remain closed so that no air flows through the car and causes losses. Instead, the air should flow over and under the vehicle. But the control system also has to respond to other needs, such as when occupants want to climatize the interior. That’s when the louvers open. Despite that, our highly intelligent thermal management ensures that the louvers remain shut for most of the driving cycle, thus lowering the cd value.”